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Name Class Date

3.3 Finding Complex Solutions
Ro> \490\ of Quadratic Equations

Essential Question: How can you find the complex solutions of any quadratic equation?

Investigating Real Solutions of Quadratic Equations

@ Complete the table.

ax’*+bx+c=0 f(x) = ax*+ bx g(x)=—c

2x'+4x4+1=0

2x'+4x4+2=0

22X 4+4x4+3=0

The graph of f(x) = 2x° + 4x is shown. Graph each g(x). Complete the table.

e
'2:_ (x| 27 4 4ax+1=0
4 _z\/uz 2 4] 2044 220
—_— 2¢+4x+3=0

@ Repeat Steps A and B when f(x) = —2x% + 4x.

ax*+bx+c=0 f(x) = ax*+ bx g(x) =—c

—27 +4x—1=0

-+ a4x—2=0

— x4 4x—3=0
y | . Number of Real
A I8N Equation Solutions
] —
AN\ 4 Ax—1=0
T T lG ! l
—4 =2 S \ 4 —2* 4+ 4x—2=0
1
j . \ 2% 4 4x—3=0
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Reflect
1. Look back at Steps A and B. Notice Number of Real Solutions
that the minimum value of f{x) in Steps Value of g(x) of
A and B is —2. Complete the table by f(x) = g(x)

identifying how many real solutions ()= —2

the equation f{x) = g(x) has for the =

given values of g{x). gix) > —2
glx) < =2

2. Look back at Step C. Notice that the

Number of Real Solutions

maximum value of f{x) in Step Cis 2. Value of g(x) of
Complete the table by identifying how - f(x) = g(x)
many real solutions the equation § -3
(x) = g(x) has for the given values 9 =
of g(x). glx) > 2

glx) <2

3. You can generalize Reflect 1: For f(x) = ax” + bx where a > 0, f(x) = g(x) where g(x) = —c has real
solutions when g(x) is greater than or equal to the minimum value of f{x). The minimum value of f(x) is

S I A A - D T
2al 2a 2al T Tl4gt 2a” 4a 2a  4a 4d4a = da’
X
So, f(x) = g(x) has real solutions when g(x) =
b2
da
Add&—ltobnthsidcs.b—l—r:}ﬂ
da 4a -

da’
Substitute —c for g(x). —c >

Multiply both sides by 4a, which is positive. b* — 4ac > 0
In other words, the equation ax* + bx + ¢ = 0 where a > 0 has real solutions when b* — 4ac > 0.

Generalize the results of Reflect 2 in a similar way. What do you notice?
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Finding Complex Solutions by Completing
the Square

2
Recall that completing the square for the expression x* + bx requires adding [g] to it, resulting in the perfect square
fph2 1
trinomial x* + bx + {%) , which you can factor as {x + %) . Don't forget that when x* + bx appears on one side of an

AT 2
equation, adding (%) to it requires adding (g) to the other side as well.

Example1 Solve the equation by completing the square. State whether the solutions

are real or non-real.

® K+ 9—6=0

L. Write the equation in the form x* 4 bx = ¢.

3x"'+9
4+ 9x=6

K2+ x =2

2. Identlfvfrand
=3
bz_ _9 (L

3. Add (EJ to both ?Q}the equation.

x +3x+2_2+E

(K2 —)

(K+%)*
xz—lxé'?i—ﬂ

1. Write the equation in the form x* 4 bx = c.

Yl 2%+ = =7 +1

2. Identify b and ( )

bl= -2
CRESE

3. Add (%J to both sides.

¥ =2x+ \ ==74 \

& D&

+3X "‘?1—21_2 X+

4. Solve for x.
Ry
x+ 2)
1
2

x+

[tar b |t

17

i

<+

<==J

[5S]

_ =3+ V17
2
=
There are two real solutions: =3+ vl7
—3—17
a.rl.d. T .

4. Solve for x.

Feua| =-7+ |
=116
N YA

1V~

X = |1 JG6

There are two real/non-real solutions:

and
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4. How many complex solutions do the equations in Parts A and B have? Explain.

Your Turn
Solve the equation by completing the square. State whether the solutions are real or non-real.

5, X+48x417=0 6. x+1()x

o T xTrox+2S2 7S
y 480 @59

- -

ol =

(V=T Qﬂ =3 5
ERas: P SHV

i
Identlfymg Whether Solutions Are Real or Non-real

By completing the square for the general quadratic equation ax® + bx + ¢ = 0, you can obtain the quadratic

—b £ VB — dac

Sformula, x = 5

, which gives the solutions of the general quadratic equation. In the quadratic formula, the

expression under the radical sign, b* — 4ac, is called the discriminant, and its value determines whether the solutions
of the quadratic equation are real or non-real.

Value of Discriminant Number and Type of Solutions
b*—4ac>0 Two real solutions
b*—4ac=0 One real solution
b? —4ac<0 Two non-real solutions

Example2 Answer the question by writing an equation and determining whether the
solutions of the equation are real or non-real.

A ball is thrown in the air with an initial vertical velocity of
14 m/s from an initial height of 2 m. The ball’s height h (in meters)

at {jpyreftisreed s T AT Do IOu e :.;Jr == = sadratic functiag
— —4.9t" + 141 + 2. Does the ball reach a he

Set h(t) equal to 12. —457 4+ 14t 4+ 2 =

Subtract 12 from both sides. —,:.‘)IZ +Et ® S’: 0
Find the value of the discriminant. 1?— 4[—4,3}(—1(3 =196 — 196 =10

Because the discriminant is zero, the%]uation has one real solution, so the ball
does reach a height of 12 m.
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A person wants to create a vegetable garden and keep the rabbits
out by enclosing it with 100 feet of fencing. The area of the garden
is given by the function A(w) = w(50 — w) where w is the width
(in feet) of the garden. Can the garden have an area of 700 ft?e

Set A(w) equal to 700. w50 —w) = 700

Multiply on the left side. 50w —w'= wo

Subtract 700 from both sides. z(wz + gw - %: 0 _b?-"' 4AC
Find the value of the discriminant. 50 4( D(_‘?@

Because the discriminant is [positive/zero/negative], the equation has [two real/one real/two non-real]
solutions, so the garden [can/cannot] have an area of 700 ft*.

Your Turn

Answer the question by writing an equation and determining if the solutions are
real or non-real.

7. A hobbyist is making a toy sailboat. For the triangular sail, she wants the height h (in inches)
to be twice the length of the base b (in inches). Can the area of the sail be 10 in*?

Finding Complex Solutions
Using the Quadratic Formula

When using the quadratic formula to solve a quadratic equation, be sure the equation is in the
form ax* + bx + ¢ = 0.

Example3 Solve the equation using the quadratic formula.
Check a solution by substitution.

@ ;h:-nxl :92:: —Cs’= 0

Write the quadratic formula. x=

=b 4+ Vb = dac
2a

Substitute values. = —(=2) % \‘%i};_ 4(_5}{_@
e JTSe m
Simplify. \)T \Ygol = —r

2J39

2o
i i)

October 23, 2015



3.3 Finding Complex Solutions of Quadratic Equations.notebook October 23, 2015

So, the two solutions are 1 @ and —% + :m.
5 5 5 5
Check by substituting one of the values.
Substitute. -5 —4 W39 _ 2 -1 :\{39 —8=0
5 5 5 5
1 239 39 1 iv39 .
Square. =5 4 —¥22 _ 3| _ o1 _ —-820
quare (25 +=3s 25J ( 5 5 ]
Distribute. _L_2iv39 39 2 2V g1
5 5 5 5 5
Simplify. 20 _gz2
! 5
7+ 2+ 3 = —1
— _ x ® &
Write the equation with 0 on one side. Tx" 4 2x + 4": 0

b — dac
Write the quadratic formula. x= W

A
1)

—211\/4—108)

—2- + (o :'\,’JIZ

Substitute values.

Simplify. =

So, the two solutions are and

Check by substituting one of the values.

Substitute.

Square.

Distribute.

Simplify.
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Your Turn

Solve the equation using the quadratic formula. Check a solution by substitution.
6x' =5x—4=10 9, x4 8x+412=2x

= b + YY)
2000}
548
PRI VI
\\%/\’L “oh bond /1

10. Discussion Suppose that the quadratic equation ax® + bx 4+ ¢ = 0 has p + gi where g 7 0 as one of its
solutions. What must the other solution be? How do you know?

11. Discussion You know that the graph of the quadratic function f(x) = ax® + bx + c has the vertical line

x= —ji as its axis of symmetry. If the graph of f(x) crosses the x-axis, where do the x-intercepts occur

relative to the axis of symmetry? Explain.

12. Essential Question Check-In Why is using the quadratic formula to solve a quadratic equation easier
than completing the square?

hdndnla 2 14K Tacean 1
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_ q4-12,14, 7-12, 2|
P@ |14t 2-C, 51'1"‘\/_/
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&) Evaluate: Homework and Practice

1. The graph of f(x) = x* + 6x is shown. Use the
graph to determine how many real solutions
the following equations have: x* + 6x + 6 =10,
x*+ 6x + 9 =0, and x* + 6x + 12 = 0. Explain.

« Online Homework
- Hints and Help
- Extra Practice

2. The graph of f(x) = —%xz + 3x is shown. Use the graph to determine how
many real solutions the following equations have: L isv—3=0
—%xz + 3x — % =0, and ——éxl + 3x — 6 = 0. Explain.

Solve the equation by completing the square. State whether the
solutions are real or non-real.

o LINOXIRE Wi o Brop o

XZf4X+4:—|+4— x"+&\(+l—‘—'8*l
(x42) = 3 (%t 1) = =7
X+2 = I3 X+ = £ 57

@'Zt@ :-liLﬁ
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5. at — By = —20 6. Sxt — Gy = 8 8 q
x25x+3= 2ot X=Extis=S 15
)(——) _SS (%= &)= qu
X-2:=rJF X-g =2 E‘%’-
X= 2 S+ LJ_S _3_+57-

7. x4 13x=5 B. —xl — Bx —-IE— i

b -4AC

Without solving the equation, state the number of solutions and whether
they are real or non-real.

9. —lex*4+4x+13=0 10. 7x' — llx + 10=0

4 4L 1) (VD) (-11)% 4¢2)(10)

BB 2red C1A Zna oD

11. —x° ——x—l 12, 4x" 4+ 9= 12x

‘*'T_:,‘k-\=o Ay 12%+ 9 =O
CEY- 4N 1Y - 4R

10
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Answer the question by writing an equation and determining whether the solutions of
the equation are real or non-real.

13. A gardener has 140 feet of fencing to put around a rectangular vegetable garden. The function
A(w) = 70w — w* gives the garden’s area A (in square feet) for any width w (in feet). Does the gardener
have enough fencing for the area of the garden to be 1300 ft*?

p -4~

it with an initial vertical velocity %Ls. The
= —16t* + 64t models the height & (in feet) of thesaf

ball at time ¢ (in seconds). Does the golf ball reach a heigl @

(00_—?-1th+ 4T .
O =N € +b4t -0

64— 4CI)EGO) =256

D

15. As a decoration for a school dance, the student council creates a
parabaolic arch with balloons attached to it for students to walk
through as they enter the dance. The shape of the arch is modeled by
the equation y = x{5 — xJ, where x and y are measured in feet and
where the origin is at one end of the arch. Can a student who is 6 feet

6 inches tall walk through the arch without ducking?

11
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16. A small theater company currently has 200 subscribers who each pay $120 for a season ticket. The
revenue from season-ticket subscriptions is $24,000. Market research indicates that for each $10
increase in the cost of a season ticket, the theater company will lose 10 subscribers. A model for the
projected revenue R (in dollars) from season-ticket subscriptions is R{p} = [12{] + lﬂp}[zﬂﬂ — lﬂp}.
where p is the number of $10 price increases. According to this model, is it possible for the theater
company to generate $25,600 in revenue by increasing the price of a season ticket?

Solve the equation using the quadratic formula.
17. ¥ —8x+27=0 18. x* —30x+50=10

A= p=-8c=21 A=l B=-30 =509

8+ J¢ 201 J0s0% 450

2C1) ;
p 2V
8i \Li—‘lq‘ EO'_"\S 700/
Z
V.

(8

12
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19. x+3=x" 20. 2x°+ 7T =4dx
O:. )(L-ﬂ"-?’
gl Bl €772

[ TJEDEA0ED
—_— -

2¢D

v -4 A

October 23, 2015

21. Place an X in the appropriate column of the table to classify each equation by the

number and type of its solutions.

Two Real One Real

Two Non-Real

Solutions Solution

¥*—3x+1=0

Solutions

¥—2x+1=0 \/

¥*—x+1=0

¥*4+1=0

¥ +x+1=0

&
\\

X4+ 2x+1=0 / ‘/

¥*4+3Ix+1=0 \/

13
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